Cisneros-Velarde, P., Petersen, A. & Oh, S.-Y. Distributionally Robust Formulation and Model Selection for the Graphical Lasso. in Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics (eds. Chiappa, S. & Calandra, R.) vol. 108 756–765 (PMLR, 2020).
Khare, K., Oh, S.-Y., Rahman, S. & Rajaratnam, B. A Scalable Sparse Cholesky Based Approach for Learning High-Dimensional Covariance Matrices in Ordered Data. Machine Learning 108, 2061–2086 (2019).
Koanantakool, P., Ali, A., Azad, A., Buluc, A., Morozov, D., Oliker, L., Yelick, K. & Oh, S.-Y. Communication-Avoiding Optimization Methods for Distributed Massive-Scale Sparse Inverse Covariance Estimation. in Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics (eds. Storkey, A. & Perez-Cruz, F.) vol. 84 1376–1386 (PMLR, 2018).
Ali, A., Khare, K., Oh, S.-Y. & Rajaratnam, B. Generalized Pseudolikelihood Methods for Inverse Covariance Estimation. in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (eds. Singh, A. & Zhu, J.) vol. 54 280–288 (PMLR, 2017).
Bhimji, W., Racah, E., Ko, S., Sadowski, P., Tull, C., Oh, S.-Y. & Prabhat. Exploring Raw HEP Data Using Deep Neural Networks at NERSC. in Proceedings of 38th International Conference on High Energy Physics — PoS(ICHEP2016) (Sissa Medialab, 2017).
Koanantakool, P., Azad, A., Buluc, A., Morozov, D., Oh, S.-Y., Oliker, L. & Yelick, K. Communication-Avoiding Parallel Sparse-Dense Matrix-Matrix Multiplication. in 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS) (Institute of Electrical and Electronics Engineers (IEEE), 2016).
Racah, E., Ko, S., Sadowski, P., Bhimji, W., Tull, C., Oh, S.-Y., Baldi, P. & Prabhat. Revealing Fundamental Physics from the Daya Bay Neutrino Experiment Using Deep Neural Networks. in International Conference on Machine Learning and Applications (ICMLA) (2016).
Khare, K., Oh, S.-Y. & Rajaratnam, B. A Convex Pseudolikelihood Framework for High Dimensional Partial Correlation Estimation with Convergence Guarantees. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77, 803–825 (2014).
Oh, S.-Y., Dalal, O., Khare, K. & Rajaratnam, B. Optimization Methods for Sparse Pseudo-Likelihood Graphical Model Selection. in Advances in Neural Information Processing Systems 27 (eds. Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D. & Weinberger, K. Q.) 667–675 (Curran Associates, Inc., 2014).
Levinson, D. F. et al. Copy Number Variants in Schizophrenia: Confirmation of Five Previous Findings and New Evidence for 3q29 Microdeletions and VIPR2 Duplications. American Journal of Psychiatry 168, 302–316 (2011).
Jaffe, A. H. et al. Cosmology from MAXIMA-1, BOOMERANG, and COBE DMR Cosmic Microwave Background Observations. Physical Review Letters 86, 3475–3479 (2001).
Wu, J. H. P. et al. Asymmetric Beams in Cosmic Microwave Background Anisotropy Experiments. The Astrophysical Journal Supplement Series 132, 1–17 (2001).
Hanany, S. et al. MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10 Arcminutes to 5 Degrees. The Astrophysical Journal 545, L5–L9 (2000).